
An Analysis of the (µ+1) EA on Simple
Pseudo-Boolean Functions

Carsten Witt�

FB Informatik, LS 2, Univ. Dortmund, 44221 Dortmund, Germany
carsten.witt@cs.uni-dortmund.de

Abstract. Evolutionary Algorithms (EAs) are successfully applied for
optimization in discrete search spaces, but theory is still weak in par-
ticular for population-based EAs. Here, a first rigorous analysis of the
(µ+1) EA on pseudo-Boolean functions is presented. For three example
functions well-known from the analysis of the (1+1) EA, bounds on the
expected runtime and success probability are derived. For two of these
functions, upper and lower bounds on the expected runtime are tight,
and the (µ+1) EA is never more efficient than the (1+1) EA. Moreover,
all lower bounds grow with µ. On a more complicated function, however,
a small increase of µ provably decreases the expected runtime drastically.

For the lower bounds, a novel proof technique is developed. The sto-
chastic process creating family trees of individuals is investigated and
relationships with well-known models of random trees, e. g., uniform ran-
dom recursive trees, are established. Thereby, a known theory on random
trees is transferred to the analysis of EAs. Moreover, generalizations of
the technique are applicable to more complex population-based EAs.

1 Introduction

Evolutionary Algorithms (EAs) are successfully applied to optimization tasks,
but a solid theoretical foundation with respect to their computational time com-
plexity is still missing. Runtime analysis of EAs often focuses on simple single-
individual EAs such as the (1+1) EA (e. g., Garnier, Kallel and Schoenauer
(1999), Droste, Jansen and Wegener (2002)). Regarding population-based EAs,
runtime analyses exist for the case of multi-objective optimization (Giel (2003)),
but there the purpose of a population is different than in the single-objective
case. We consider discrete search spaces and single-objective optimization, in
particular the maximization of pseudo-Boolean functions f : {0, 1}n → R. Here,
runtime analyses of crossover-based EAs (e. g., Storch and Wegener (2003), Jan-
sen and Wegener (2001c)) and of steady-state EAs using fitness-proportional
selection and mutation only (Jansen and Wegener (2001b), Witt (2003)) are
known. However, analyses for standard (µ+λ) EAs using uniform selection for
reproduction are rare for µ > 1. Up to now, there are only results on (1+λ) EAs
� supported by the Deutsche Forschungsgemeinschaft (DFG) as a part of the Colla-

borative Research Center “Computational Intelligence” (SFB 531)

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 761–773, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [300 300] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 300 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 200 dpi Downsampling für Bilder über: 200 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 200 dpi Downsampling für Bilder über: 200 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.0 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.0 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 200 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 200 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [300 300]>> setpagedevice

762 C. Witt

(Jansen and De Jong (2002)) and some variants of (µ+µ) EAs (He and Yao
(2002)).

The aim of this paper is to contribute to a theory of standard (µ+λ) EAs,
where µ > 1. We start with the simple case λ = 1, considering a (µ+1) EA
that is a generalization of the (1+1) EA for the search space {0, 1}n, and fol-
low the research line started for this (1+1) EA. We study the behavior of the
(µ+1) EA on example functions and compare the obtained results with those for
the (1+1) EA. To this end, a new and general proof technique for bounding the
expected runtime of the (µ+1) EA from below is developed. An advantage of the
new method is that it has not been designed for a special mutation operator. In
particular, we are able to analyze the (µ+1) EA with a global search operator
that may flip many bits. Often, the analysis of EAs is much more difficult with
a global than with a local search operator (see, e. g., Wegener and Witt (2003)).

The paper is structured as follows. In Sect. 2, we define the (µ+1) EA and
the considered example functions. Moreover, we introduce the tool of family
trees, which is essential throughout the paper. In Sect. 3, simple upper bounds
on the expected runtime of the (µ+1) EA on the example functions are pre-
sented. In Sect. 4, we describe the new lower bound technique completely but
omit the proofs of technical lemmas due to space limitations; a full version of
the paper is available as a technical report. In Sect. 5, we apply the technique
to prove lower bounds on the expected runtime and bounds on the success pro-
bability. These bounds are tight for two of the examples. Moreover, they show
that here the (µ+1) EA is never more efficient than the (1+1) EA. However, it
is a common belief that a population helps to better explore the search space,
and it is important to find an example where the (µ+1) EA with µ > 1 outper-
forms the (1+1) EA. Therefore, a function where an increase of µ by a sublinear
factor decreases the expected runtime drastically, namely from exponential to
polynomial, is identified in Sect. 6. We finish with some conclusions.

2 Definitions

We obtain the (µ+1) EA for the maximization of functions f : {0, 1}n → R as
a generalization of the well-known (1+1) EA (see Droste, Jansen and Wegener
(2002)). As for continuous search spaces, a pure (µ+1) evolution strategy should
do without recombination and should employ a uniform selection for reproduc-
tion. As usual, a truncation selection is applied for replacement. The mutation
operator should be able to search globally, i. e., to flip many bits in a step. There-
fore, a standard mutation flipping each bit with probability 1/n seems the most
sensible. These arguments lead to the following definition of the (µ+1) EA.

1. Choose µ individuals x(i) ∈ {0, 1}n, i ∈ {1, . . . , µ}, uniformly at random.
Let the multiset X(0) = {x(1), . . . , x(µ)} be the initial population at time 0.

2. Repeat infinitely
a) Choose an x from the population X(t) at time t uniformly at random.
b) Create x′ by flipping each bit of x independently with probability 1/n.

Let X ′ be the population obtained by adding x′ to X(t).

An Analysis of the (µ+1) EA on Simple Pseudo-Boolean Functions 763

c) Create X(t+1), the current population at time t + 1, by deleting an indi-
vidual from X ′ with lowest f -value uniformly at random. Set t := t + 1.

We have kept the (µ+1) EA as simple as possible and refrain from employing
diversity-maintaining mechanisms. The (µ+1) EA with µ = 1 is very similar to
the (1+1) EA, but differs in one respect. If an individual created by mutation has
the same f -value as its father, either of both is retained with equal probability.

As usual in theoretical investigations, we leave the stopping criterion of the
(µ+1) EA unspecified. We analyze the number of iterations (also called steps)
of the infinite loop until the current population for the first time contains an
optimal individual, i. e., one that maximizes f . The sum of this number and the
population size µ is denoted as the runtime of the (µ+1) EA and corresponds to
the number of function evaluations (a common approach in black-box optimiza-
tion, cf. Droste, Jansen, Tinnefeld and Wegener (2002)). Throughout the paper,
we consider only µ = poly(n), i. e., values of µ bounded by a polynomial of n.

We study the (µ+1) EA on the following example functions. The well-known
function OneMax(x) = x1 + · · · + xn counts the number of ones of a string
x ∈ {0, 1}n and LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj counts the number of leading

ones. The function SPC(x) (short path with constant fitness) introduced by
Jansen and Wegener (2001a) equals n − OneMax(x) if x cannot be written as
1i0n−i for any i. It equals 2n if x = 1n and n + 1 otherwise. SPC is of special
interest since EAs have to cross a plateau of constant fitness to find the optimum.

To elucidate the utility of the (µ+1) EA’s population, throughout the paper,
we compare the (µ+1) EA with µ parallel runs of the (1+1) EA. The total cost
(neglecting initialization cost) of t steps of the (µ+1) EA corresponds to the cost
raised by µ parallel runs of the (1+1) EA up to time t/µ. Thus, if we consider
a (µ+1) EA at time t, we denote µ parallel runs of the (1+1) EA considered at
time t/µ as the corresponding parallel run. In order to derive runtime bounds
for the (µ+1) EA, it is helpful to consider the so-called family trees of the
individuals from the initial population (this concept has been introduced in a
different context by Rabani, Rabinovich and Sinclair (1998)). Fix an arbitrary
such individual x. If x is mutated, a descendant of x is produced. More generally,
we can visualize the descendants of x and their descendants by the family tree
Tt(x) at time t as follows. T0(x) contains only the root x. Tt(x) contains Tt−1(x)
and the additional edge {v, w} if w is the result of a mutation of the individual v
at time t−1 and v is contained in Tt−1(x). Note that the tree Tt(x) may contain
individuals that have already been deleted from the corresponding population.

3 Upper Bounds

The following upper bounds on the runtime are not too difficult to obtain.

Theorem 1. Let µ = poly(n). Then the expected runtime of the (µ+1) EA on
LeadingOnes is bounded above by µ+3en·max{µ ln(en), n} = O(µn log n+n2).

764 C. Witt

Proof. We measure the progress to the optimum by the potential L, defined as
the maximum LeadingOnes value of the current population’s individuals. To
increase L, it is sufficient to select an individual with maximum value and to
flip the leftmost zero. The selection and the mutation operator of the (µ+1) EA
are independent. Hence, if there are i individuals with maximum value, the
probability of the considered event is at least i

µ · 1
n · (1 − 1

n

)n−1 ≥ i
eµn , and the

waiting time is at most eµn/i. The potential has to increase at most n times.
Estimating i ≥ 1 would lead to an upper bound µ+eµn2 on the expected runtime.

However, the (µ+1) EA can produce replicas of individuals with maximum
function value. If their number is i, the probability of creating a further replica is
at least (i/µ)(1 − 1/n)n ≥ i/(2eµ). Furthermore, if i < µ, this replica replaces a
worse individual and increases the number of best ones. Assume pessimistically
that L stays fixed until we have at least min{n/ln(en), µ} replicas. The expected
time for this is, by elementary calculations, at most 2eµ ln(en). Now the expected
time to increase L is at most eµn/(min{n/ln(en), µ}). Altogether, the expected
runtime is at most µ+n(2eµ ln(en)+ eµn

min{n/ln(en),µ}) ≤ µ+3en·max{µ ln(en), n}.
��

Theorem 2. Let µ = poly(n). Then the expected runtime of the (µ+1) EA on
OneMax is bounded above by µ + 5eµn + en ln(en) = O(µn + n log n).

Proof. The proof idea is similar as in Theorem 1. Let L be the maximum One-
Max value of the current population. In contrast to LeadingOnes, the proba-
bility of increasing L depends on L itself. Since each individual has at least n−L

zeros, the considered probability is bounded below by i
µ · n−L

n · (
1 − 1

n

)n−1 ≥
i(n−L)

eµn if the population contains at least i individuals with maximum value.
The expected time until the population contains at least min{n/(n − L), µ}

replicas of an individual with value L is bounded by 2eµ ln(en/(n−L)) if L does
not increase before. If we sum up these expected waiting times for all values of L,
we obtain (using Stirling’s formula) a total expected waiting time of at most

2eµ
n−1∑

L=0

ln
(

en
n − L

)

= 2eµ ln
(

ennn

n!

)

≤ 2eµ ln(e2n) = 4eµn.

After the desired number of replicas has been obtained, the expected time for
increasing L is at most eµn

min{µ,n/(n−L)}·(n−L) = eµn
min{µ(n−L),n)} . By elementary

calculations, the expected waiting time for all L-increases is at most en ln(en)+
eµn, and the total expected runtime, therefore, at most µ+en ln(en)+5eµn. ��

For SPC, we can only prove a (seemingly) trivial upper bound.

Theorem 3. Let µ = poly(n). Then the expected runtime of the (µ+1) EA on
SPC is bounded by O(µn3).

Sketch of proof. For each individual x from the initial population, we consider
paths in its family tree directed from the root to a node v. If the individual

An Analysis of the (µ+1) EA on Simple Pseudo-Boolean Functions 765

corresponding to v has been deleted, we call the path dead, and alive otherwise.
There is always at least one alive path in some family tree.

We want to show that the following property P holds for every initial in-
dividual x. The expected time until at least one of x’s paths reaches length k
or until all of its paths are dead is bounded by 4eµk for all k. This will imply
the theorem for the following reasons. By similar arguments as in the proof of
Theorem 1, one can show that the (µ+1) EA reaches a situation where the ent-
ire population contains individuals of shape 1i0n−i with i �= n, i. e., from the
plateau of constant fitness, after O(µn log n) expected steps (or is done before).
Afterwards, we can ignore steps of the (µ+1) EA creating individuals outside the
plateau since these individuals are deleted immediately after creation. Since the
(µ+1) EA chooses for deletion uniformly from the worst individuals, the event
that a path dies is independent of the individual at the path’s end provided it is
from the plateau. Hence, any path of plateau points has the same properties as a
path of plateau points drawn by a run of the (1+1) EA on SPC. By the results
of Jansen and Wegener (2001a), such a path contains an optimal individual after
an expected length of O(n3), i. e., after O(µn3) expected steps according to P .

To prove P , we assume w. l. o. g. that there is always at least one alive path
for x. Consider the potential L, denoting the length of the currently longest alive
path leading to an x′ that will always have an alive descendant. There must be
such an x′ according to our assumptions. Moreover, L cannot shrink in the run,
and there is the following sufficient condition for increasing L. An individual x′

defining the current L-value is mutated, a child from the plateau is created, and
x′ is deleted before its child is deleted. The probability is 1/µ for the first event,
at least (1 − 1/n)n ≥ 1/(2e) for the second event since producing a replica is
sufficient, and 1/2 for the third one since the considered individuals have equal
fitness. Hence, the expected time to increase L is at most 4eµ, implying P . ��

4 A General Lower Bound Technique

For lower bounds on the runtime, we consider the growth of the family tree for
any initial individual of the (µ+1) EA. Upper bounds on the depth of family
trees always follow from the selection mechanism of the (µ+1) EA, which selects
the individual to be mutated uniformly from the current population. Therefore,
it is possible to model the stochastic process growing a family tree as follows.

Definition 1 (1/µ-tree). Let p := pt,u, t, u ≥ 0, be a sequence of probability
distributions s. t. the support of pt,u is {0, 1, . . . , u}. A p-tree at time 0 consists
only of the root. A p-tree Tt at time t ≥ 1 is obtained from a p-tree Tt−1 as
follows. Let u be the number of nodes of Tt−1. Sample v by pt−1,u. If v > 0,
append a new leaf to the v-th inserted node of Tt−1; otherwise, let Tt := Tt−1.

A p-tree is called a 1/µ-tree if pt,u(v) ≤ 1/µ for all v > 0.

A 1/µ-tree at time t can have less than t + 1 nodes since p can put some
probability on 0. If we model family trees by 1/µ-trees, we do not specify the
distributions pt,u exactly since it is too difficult to predict whether and, if so,

766 C. Witt

which individuals corresponding to nodes are deleted. In the (µ+1) EA, deleted
nodes have probability 0 of being chosen and alive nodes have probability 1/µ.

The following lemma contains an interesting result for the depth of 1/µ-trees.

Lemma 1. Let D(t) denote the depth of a 1/µ-tree at time t. For all t ≥ 0 and
d ≥ 0, Prob(D(t) ≥ d) ≤ (t/µ)d/d!. Moreover, Prob(D(t) ≥ 3t/µ) = 2−Ω(t/µ).

Lemma 1 states that, with overwhelming probability, a family tree of the
(µ+1) EA becomes asymptotically no deeper than the total number of mutations
performed in a single run of the corresponding parallel run. The tree can become
wide, but a flat tree means that few mutations lie on any path from the root
to a node in the tree. Hence, if the depth is small, this means that a leaf is an
individual that is likely to be similar to the root. This makes the optimization of
even simple functions very unlikely if the tree is not deep enough. The following
result is tight for some simple functions such as OneMax (if µ is not too small).

Theorem 4. Let µ = poly(n) and let f be a function with a unique global
optimum. Then the expected runtime of the (µ+1) EA on f is Ω(µn + n log n).
Moreover, the success probability within some cµn steps, c > 0, is 2−Ω(n).

Sketch of proof. The lower bound of Ω(n log n) follows for µ ≤ log n/2 by a
generalization of the coupon collector’s theorem described by Droste, Jansen
and Wegener (2002) for the considered class of functions and the (1+1) EA. For
the lower bound Ω(µn), we set up a phase of length s := �cµn	 for some constant
c > 0 and show that the (µ+1) EA requires at least s steps with probability
1 − 2−Ω(n) if c is small enough. The proof idea is as follows. In s steps, a family
tree created by the (µ+1) EA with high probability has to reach a certain depth
to optimize f ; however, the probability of reaching this depth is very small.

Let x be an arbitrary initial individual x. We consider the infinite random
process of building its family tree. Let Tt(x) denote the tree at time t. According
to Lemma 1, the probability of Ts(x)′s depth reaching at least 3cn is 2−Ω(n).
Now the aim is to prove that with probability 1 − 2−Ω(n), a depth of at least
3cn is necessary for optimization (if c is small enough).

During the process building the trees Tt(x), we consider the event that a
node v with optimal f -value is inserted. Consider the path pv from x to v. We
claim that with probability 1 − 2−Ω(n), its length is at least n/4. By Chernoff
bounds (see Motwani and Raghavan (1995)), the root x has Hamming distance
at least n/3 to the unique optimal string (represented by v) with probability
1 − 2−Ω(n). Moreover, consider a sequence of n/4 strings where each string is
the result of a mutation of its predecessor by means of the (µ+1) EA’s mutation
operator. The expected Hamming distance of any two strings in this sequence
is at most n/4, and, by Chernoff bounds, it is less than n/3 with probability
1 − 2−Ω(n). Since the nodes on each path in the trees Tt(x) form such a random
sequence of strings, the claim follows. Moreover, Ts(x) contains at most s =
poly(n) paths, and there are at most polynomially many choices for x since
µ = poly(n). Therefore, the probability that there is a node with optimal f -value
at depth less than n/4 in a family tree at time s is still 2−Ω(n). If c is small

An Analysis of the (µ+1) EA on Simple Pseudo-Boolean Functions 767

enough, n/4 is at least 3cn. Since the sum of all failure probabilities is 2−Ω(n),
the proof of the theorem is complete. ��

Theorem 4 covers the wide range of unimodal functions. For some unimodal
functions (e. g., linear functions), the (1+1) EA’s expected runtime is O(n log n).
For such functions, Theorem 4 states that the (µ+1) EA is (for large µ) at most
by a factor of O(log n) more efficient than the corresponding parallel run.

For more difficult functions (meaning that the (1+1) EA’s expected runtime
is ω(n log n)), the proof concept of Theorem 4 can be carried over to show larger
lower bounds also for the (µ+1) EA. However, we have to derive better lower
bounds on the depth of family trees. Therefore, more structure of the function f
and the encountered individuals comes into play. Although all nodes of a family
tree are different individuals, many individuals may represent the same string
x ∈ {0, 1}n. For an individual x∗, we call the x ∈ {0, 1}n associated with x∗ the
string of x∗ or say that x∗ is the string x. We also call the string of an individual
its color. This leads to the following definition.

Definition 2 (Monochromatic Subtree (MST)). A connected subgraph of a
family tree is called a monochromatic subtree if all its nodes are the same string.

Obviously, all nodes in an MST have equal f -value. It is interesting that the
stochastic process creating an MST sometimes equals the process for a so-called
random recursive tree (RRT), a model of random trees well known from the
literature (e. g., Smythe and Mahmoud (1995)). This will allow us to apply the
known theory on RRTs. We obtain an RRT by the following stochastic process.

Definition 3 (Random Recursive Tree (RRT)). An RRT at time 0 consists
only of the root. An RRT Tt at time t ≥ 1 is obtained from an RRT Tt−1 by
choosing uniformly at random one of its nodes and appending a new leaf to it.

Note that the RRT at time t ≥ 0 consists of exactly t+1 nodes. The processes
generating MSTs and RRTs coincide only if the (µ+1) EA can choose uniformly
from the set of nodes of the MST. Since deleted individuals are nevertheless
kept in the family tree, this property can only be guaranteed if the individuals
of the considered MST are still present in the population. To prove the following
lemma, one exploits that considering MSTs, the event of appending a node whose
color is different from that of the father is independent of the choice of the father.

Lemma 2. Let T ∗ be a monochromatic subtree of a family tree and let V be the
set of nodes of T ∗. If the (µ+1) EA does not delete any individual from V until
the creation of the last node of T ∗ then T ∗ is an RRT.

If the (µ+1) EA deletes individuals of an MST from the population, it chooses
these, by the definition of an MST and the (µ+1) EA, uniformly from the alive
nodes of the MST. Hence, the earliest inserted nodes have the highest chances
of having been deleted by any fixed time t. Early inserted nodes are close to the
root. This implies that an MST that is affected by deletion steps is typically
deeper than an RRT of the same size. We can make this precise by considering
generalized RRTs, namely so-called p-marked random trees (p-marked RTs).

768 C. Witt

Definition 4 (p-marked RT). Let pt,u, t, u ≥ 0, be a sequence of probability
distributions s. t. the support of pt,u is {0, . . . , u}. A p-marked RT at time 0 con-
sists only of the unmarked root. A p-marked RT Tt at time t ≥ 1 is obtained
from a p-marked RT Tt−1 in two steps. First, an unmarked node is chosen uni-
formly at random and a new, unmarked leaf is appended. Let U denote the set
of unmarked nodes after this step. Then u∗ is sampled according to pt−1,|U |−1, a
subset S∗ ⊆ U of size u∗ is chosen uniformly, and all nodes in S∗ are marked.

Again, a tree at time t has exactly t + 1 nodes, only the unmarked ones of
which can become fathers of new nodes. It is crucial that for all pt,u, the set of
newly marked nodes is, by definition, uniform over the yet unmarked ones and
that always at least one node remains unmarked.

Lemma 3. A monochromatic subtree of a family tree is a p-marked RT.

By technical analyses, one can show that the probability of a p-marked RT
with t nodes reaching depth d is, for any p, at least as large as the respective
probability of an RRT. Let for a p-marked RT and an RRT at time t the measures
D∗(t, i) resp. D(t, i) denote the depth of the node that was inserted at time i.

Lemma 4. For all t, i, d ≥ 0 and i ≤ t, Prob(D∗(t, i) ≥ d) ≥ Prob(D(t, i) ≥ d).

Since lower bounds on the depth of ordinary RRTs are well known (Pittel
(1994)), we have developed new tools for lower bounding the depth of MSTs
and, therefore, of family trees. Upper bounds are still provided by Lemma 1.

5 More Special Lower Bounds

We apply the proof method developed in the last section to a well-studied fun-
ction. Here, the method can also be considered as a generalization of the proof
method of artificial fitness layers (e. g., Droste, Jansen and Wegener (2002)).

Theorem 5. Let µ = poly(n). Then the expected runtime of the (µ+1) EA on
LeadingOnes is Ω(µn log n+n2). Moreover, the success probability within some
cµn log n steps, c > 0, is 2−Ω(n).

Sketch of proof. The bound Ω(n2) follows by applying the analysis of Leading-
Ones and of the (1+1) EA by Droste, Jansen and Wegener (2002) to the poten-
tial L from the proof of Theorem 1. The basic idea for the bound Ω(µn log n)
is the same as in Theorem 4. We show that for some small enough constant
c > 0, the (µ+1) EA requires at least s := �cµn log n	 steps with probability
1 − 2−Ω(n). Now we consider the family tree Ts(x) obtained after s steps for an
arbitrary initial individual x. By Lemma 1, it suffices to show that a depth of at
least 3cn log n is necessary for optimization with probability 1 − 2−Ω(n).

For notational convenience, let f := LeadingOnes. During the process of
building the trees Tt(x), we consider the event that a node v with optimal f -value
is inserted. Since initial individuals are uniform over {0, 1}n, the root x has an

An Analysis of the (µ+1) EA on Simple Pseudo-Boolean Functions 769

f -value of at most n/2 with probability 1−2−Ω(n). Consider the path pv from x
to v. By standard arguments from the analysis of the (1+1) EA on f (Droste,
Jansen and Wegener (2002)), the bits after the leftmost zero are, in each string
on pv, uniformly distributed. W. l. o. g., the f -value is non-decreasing along pv.
Since the f -value has to increase by at least n/2 along pv with probability
1−2−Ω(n), the mentioned arguments imply that at least n/6 different strings lie
on pv with probability 1 − 2−Ω(n). We call the nodes that are different strings
than their fathers subtree roots. For a subtree root r, by T ∗(r) we denote the
maximal MST rooted at r. Now we work under the assumption that pv contains
at least n/6 subtree roots.

Fix an arbitrary subtree root r �= v and the next subtree root r′ on pv.
By Lemma 3, the MST T ∗(r) is a p-marked RT, and r′ is some node inserted
into (but not not attributed to) a p-marked RT. Considering the construction
of T ∗(r), we prove that r′ was likely to be created late during this process. The
probability of mutating a string with value f(r) to a better string is bounded
above by 1/n. Hence, with probability at least 1/2, the first n/2 steps that choose
a father in the already existing MST create nodes with at most the same value as
the root. Since producing a replica of a string has probability (1−1/n)n ≥ 1/(2e),
the expected number of replicas within n/2 steps is at least n/(4e). By Chernoff
bounds, with probability at least 1/2 − 2−Ω(n), T ∗(r) receives at least n/(8e)
nodes before an individual with larger value than f(r) is appended. Hence, with
probability at least 1/2−2−Ω(n), the node r′ has a distance to r that is bounded
below by the depth of the at least n/(8e)-th node of a p-marked RT.

How deep is the k-th node such that k ≥ n/(8e) within a p-marked RT? We
know it if the tree is an ordinary RRT. Then, by the theory on RRTs (Smythe and
Mahmoud (1995)), the depth is at least (log n)/2 with probability at least 1/2
(for n large enough). By Lemma 4, the same statement holds also for a p-marked
RT. Altogether, the distance of r and r′ on pv is at least (log n)/2 with probability
at least 1/4−o(1). Since the process creating T ∗(r′) is independent of the process
creating T ∗(r), we can apply Chernoff bounds. Since at least n/6 choices for r
are available on pv, at least n/25 subtree roots have their successive subtree
roots at distance at least (log n)/2 with probability 1 − 2−Ω(n). Altogether, the
length of pv is at least n(log n)/50 with probability 1 − 2−Ω(n).

Since at time s, the number of all nodes in all trees is bounded by a poly-
nomial, the probability that there is a node with f -value n at depth less than
n(log n)/50 in a family tree is 2−Ω(n). If c is small enough, the bound n(log n)/50
is at least 3cn log n. Finally, the sum of all failure probabilities is 2−Ω(n). ��

The method of lower bounding the depth of MSTs can also be used to lower
bound the expected runtime of the (µ+1) EA on the function SPC. It is easy to
see that, due to the plateau of constant fitness, there are with high probability
even Ω(n2) subtree roots on any path leading to an optimal node in a family
tree. Hence, a straightforward application of the proof of Theorem 5 would lead
to a lower bound of Ω(µn2 log n) on the expected runtime. However, one can
improve on this by considering the number of alive nodes in MSTs (which a
p-marked RTs and at least as deep as ordinary RRTs) more carefully. One can

770 C. Witt

show that p-marked RTs become the deeper the less alive nodes they contain.
Considering SPC, one can analyze the random walk describing the number of
alive individuals in MSTs. As with LeadingOnes, Θ(n) expected nodes are
added to an MST before the first relevant node with different color is created.
Since the probability of deleting a node from and of adding a node to an MST
are almost equal, we can bound the number of alive nodes before this creation
by O(n1/2+ε) with high probability. This leads to a depth of Ω(n1/2−ε) with
probability Ω(1). One can even refine this analysis to show an Ω(n1−ε) bound.

Theorem 6. Let µ = poly(n). Then the expected runtime of the (µ+1) EA
on SPC is Ω(µn3−ε) for any constant ε > 0. Moreover, the success probability
within some cµn3−ε steps, c > 0, is 2−Ω(nε/4).

6 An Example Where µ > 1 Is Essential

In the previous sections, we have shown for example functions that the (µ+1) EA
can only be slightly more efficient than its corresponding parallel run. Moreover,
it is never more efficient than a single run of the (1+1) EA on two of these
functions, and it becomes less and less efficient for increasing values of µ.

However, it is believed that populations help to better explore search spaces.
We can make this precise in some respect for an example function similar to that
considered by Witt (2003) for a GA with fitness-proportional selection. Suppose
that in a subspace {0, 1}� of the search space, an optimal setting for Leading-
Ones is sought, while in the subspace {0, 1}n−�, the optimum for OneMax is
sought. If � is not too small, the (1+1) EA normally finds the optimal setting
for OneMax faster than for LeadingOnes. On the other hand, by the results
from Sections 3–5, the expected runtime of the (µ+1) EA is O(µ� log n+ �n) for
the LeadingOnes part and Ω(µ(n− �)) for the OneMax part. For � =

√
n and

µ = Ω(n), e. g., this means that the (µ+1) EA is faster on the LeadingOnes
part. This can be explained since now the subspace of the OneMax part is better
explored but less exploited than the other subspace. If the function leads to an
isolated local optimum if the OneMax part is optimized first, the (1+1) EA is
expected to behave inefficiently. Moreover, if a global optimum is reached if the
LeadingOnes part is optimized first, we expect the (µ+1) EA to be efficient.

The following function has been defined according to this idea. Let strings
x ∈ {0, 1}n be divided into a prefix (x1, . . . , xm) of length m and a suffix
(xm+1, . . . , xn) of length �. Let � := �n1/2, i. e., m = n − o(n). For x ∈ {0, 1}n,
we define PO(x) := x1 + · · · + xm as the number of so-called prefix ones. Let
LSO(x) :=

∑�−1
i=0

∏i
j=0 xm+1+j be the number of leading suffix ones. Finally, let

b := 2m/3 + �n1/2/(700 log2 n). Then let

f(x) :=

{
PO(x) + n2 · LSO(x) if PO(x) ≤ 2m/3,
n2� − n · |PO(x) − b| + LSO(x) otherwise.

We discuss the structure of f . The first case occurs if x has few POs. Then the
f -value is strongly influenced by the number of LSOs. The optimum f -value of

An Analysis of the (µ+1) EA on Simple Pseudo-Boolean Functions 771

n2�+2m/3 holds if LSO(x) = � and PO(x) = 2m/3. However, if PO(x) ≤ 2m/3
and LSO(x) < �, the f -value is at most n2(� − 1) + 2m/3, which is less than
n2� − nb, a lower bound on the value in the second case (PO(x) > 2m/3). If
PO(x) = b and LSO(x) = �, we have a locally optimal string with f -value n2�+�.
The Hamming distance to any better string is b − 2m/3 = Ω(n1/2/log2 n). In
fact, the (1+1) EA is likely to get stuck here, and even multistarts do not help.

Theorem 7. With probability 1 − 2−Ω(n1/2/log n), the runtime of the (1+1) EA
on f is 2Ω(n1/2/log n).

Sketch of proof. We show that the (1+1) EA is likely to create b POs before �
LSOs. Then it has to overcome a Hamming distance at least b − 2m/3 in one
step to reach the optimum. This takes 2Ω(n1/2/log n) steps with high probability.

We estimate the probability p∗ of creating � LSOs before reaching b POs as
follows. With high probability, O(n) steps suffice to create b = m − Ω(n) POs
whereas increasing the LSO-value takes Ω(n) steps with probability Ω(1). Since
Ω(n3/2) steps are necessary for � LSOs with high probability, p∗ is very small. ��

Theorem 8. Let n/ln(en) ≤ µ = poly(n). With probability 1 − 2−Ω(n1/2/log n),
the runtime of the (µ+1) EA on f is O(µn3/2/log n). Its expectation is O(µn).

Sketch of proof. For the first claim, we use the idea of Theorem 1. Assume all
individuals to have always at most 2m/3 POs. Then we use the potential L,
denoting the maximum number of LSOs in the population. By the definition
of f , L cannot decrease, and no individual with L LSOs can be deleted if there
are individuals with less LSOs. Hence, as a corollary of Theorem 1 for our choice
of µ, the expected time until creating an individual with � LSOs is at most
3eµ�n1/2 ln(en). Moreover, is is easy to see that the time is O(µn) with proba-
bility 1−2−Ω(n1/2/log n). Afterwards, there is always at least one individual with
� LSOs in the population. It is sufficient to reach the optimum by increasing the
number of POs of such an individual to m. The expected time for this is bounded
by O(µn), and the time is O(µn3/2/log n) with probability 1 − 2−Ω(n1/2/log n).

We estimate the probability that no individual ever has more than 2m/3
POs within s := �cµn	 steps, c > 0 a constant, using the approach from Sect. 4.
By Lemma 1, no family tree reaches a depth of at least 3cn with probabi-
lity 1 − 2−Ω(n). No initial individual has at least 7m/12 POs with probability
1 − 2−Ω(n). If c is chosen small enough, the probability of �3cn mutations flip-
ping a total number of at least m/12 bits is 2−Ω(n). Altogether, the probability
of more than 2m/3 POs within s steps is 2−Ω(n). Since the sum of all considered
failure probabilities is 2−Ω(n1/2/log n), this proves the theorem’s first statement.

For the statement on the expected runtime, we have to consider the case
that an individual has more than 2m/3 POs at some time. It is easy to see that
then a locally optimal individual is created after O(µn) expected steps. Since
the Hamming distance to a locally optimal individual is bounded by b−2m/3 ≤
n1/2/(700 log2 n)+1, the expected time until overcoming this distance is at most

772 C. Witt

2(n1/2+o(1))/(700 log n). The constants have been chosen such that the product of
the waiting time and the probability of reaching the local optimum is o(1). ��

Conclusions

We have presented a first analysis of the (µ+1) EA for pseudo-Boolean functions
by studying the expected runtime on three well-known example functions. For
two of these, we have derived asymptotically tight bounds, showing that µ = 1
leads asymptotically to the lowest runtime. In contrast to this, we have identified
a function where the (µ+1) EA outperforms the (1+1) EA and its multistart
variants drastically provided that µ ≥ n/ln(en).

To prove lower bounds, we have developed a new technique. This technique is
not only limited to the (µ+1) EA. The upper bounds on the depth of family trees
are independent of the mutation operator and even of the search space, and the
lower bounds derived in the proofs of Theorem 4 and Theorem 5 hold for every
selection operator choosing uniformly from individuals of the same fitness. For
different selection-for-reproduction mechanisms, the concept of 1/µ-trees can be
adapted. Nevertheless, the most interesting direction seems to be an extension
to (µ+λ) strategies by a combination with the existing theory on the (1+λ) EA.

Acknowledgements. Thanks to Thomas Jansen and Ingo Wegener for di-
scussions on the proof techniques and to the anonymous referees for helpful
comments.

References

1. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science 276 (2002) 51–81

2. Droste, S., Jansen, T., Tinnefeld, K., Wegener, I.: A new framework for the valua-
tion of algorithms for black-box optimization. In: Proc. of Foundations of Genetic
Algorithms 7 (FOGA 2002), Morgan Kaufmann (2003) 253–270

3. Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations.
Evolutionary Computation 7 (1999) 173–203

4. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm. In:
Proc. of the 2003 Congress on Evol. Computation, IEEE Press (2003) 1918–1925

5. He, J., Yao, X.: From an individual to a population: An analysis of the first
hitting time of population-based evolutionary algorithms. IEEE Transactions on
Evolutionary Computation 6 (2002) 495–511

6. Jansen, T., De Jong, K.: An analysis of the role of offspring population size in
EAs. In: Proc. of GECCO 2002. (2002) 238–246

7. Jansen, T., Wegener, I.: Evolutionary algorithms – how to cope with plateaus of
constant fitness and when to reject strings of the same fitness. IEEE Transactions
on Evolutionary Computation 5 (2001a) 589–599

8. Jansen, T., Wegener, I.: On the utility of populations. In: Proc. of GECCO 2001.
(2001b) 1034–1041

An Analysis of the (µ+1) EA on Simple Pseudo-Boolean Functions 773

9. Jansen, T., Wegener, I.: Real royal road functions – where crossover provably is
essential. In: Proc. of GECCO 2001. (2001c) 375–382

10. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambr. Univ. Press (1995)
11. Pittel, B.: Note on the heights of random recursive trees and random m-ary search

trees. Random Structures and Algorithms 5 (1994) 337–348
12. Rabani, Y., Rabinovich, Y., Sinclair, A.: A computational view of population

genetics. Random Structures and Algorithms 12 (1998) 313–334
13. Smythe, R.T., Mahmoud, H.M.: A survey of recursive trees. Theory of Probability

and Mathematical Statistics 51 (1995) 1–27
14. Storch, T., Wegener, I.: Real royal road functions for constant population size. In:

Proc. of GECCO 2003. (2003) 1406–1417
15. Wegener, I., Witt, C.: On the optimization of monotone polynomials by the

(1+1) EA and randomized local search. In: Proc. of GECCO 2003. (2003) 622–633
16. Witt, C.: Population size vs. runtime of a simple EA. In: Proc. of the 2003 Congress

on Evol. Computation. Volume 3., IEEE Press (2003) 1996–2003

	Introduction
	Definitions
	Upper Bounds
	A General Lower Bound Technique
	More Special Lower Bounds
	An Example Where relax mathversion {bold}$mu >1$relax mathversion {normal}{} Is Essential

